Science Publications

AB569 Publications

AB569, a Novel, Topical Bactericidal Gel Formulation, Kills Pseudomonas aeruginosa and Promotes Wound Healing in a Murine Model of Burn Wound Infection

Authors

Amanda Barry, Warunya Panmanee, Daniel J. Hassett, Latha Satish

Details
Abstract

Cutaneous thermal injuries from burns/explosives are a major cause of morbidity and mortality and represent a monumental burden on our current health care system. Injury severity is predominantly due to potentially lethal sepsis caused by multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa (MDR-PA). Thus, there is a critical need to develop novel and effective antimicrobials for the (i) prevention, (ii) treatment, and (iii) healing of such wounds that are complicated by MDR-P. aeruginosa and other bacterial infections. AB569 is a novel bactericidal tandem consisting of acidified NaNO2 (A-NO2–) and Na2-EDTA. Here, we first show that AB569 acts synergistically to kill all human burn wound ...

AB569, a non-toxic combination of acidified nitrite and EDTA, is effective at killing the notorious Iraq Afghanistan combat wound pathogens, multi-drug resistant Acinetobacter baumannii and Acinetobacter spp.

Authors

Amy L Bogue, Warunya Panmanee, Cameron T McDaniel, Joel E Mortensen, Edwin Kamau, Luis A Actis, Jay A Johannigman, Michael J Schurr, Latha Satish, Nalinikanth Kotagiri, Daniel J Hassett

Details
Abstract

Multi-drug resistant (MDR) Acinetobacter baumannii (Ab) and Acinetobacter spp. present monumental global health challenges. These organisms represent model Gram-negative pathogens with known antibiotic resistance and biofilm-forming properties. Herein, a novel, nontoxic biocide, AB569, consisting of acidified nitrite (A-NO2-) and ethylenediaminetetraacetic acid (EDTA), demonstrated bactericidal activity against all Ab and Acinetobacter spp. strains, respectively. Average fractional inhibitory concentrations (FICs) of 0.25 mM EDTA plus 4 mM A-NO2- were observed across several clinical reference and multiple combat wound isolates from the Iraq/Afghanistan wars. Importantly, toxicity testing on human dermal fibroblasts ...

A Novel Bactericidal Drug Effective Against Gram-Positive and Gram-Negative Pathogenic Bacteria: Easy as AB569

Authors

Daniel J. Hassett and Thomas J. Meyer

Details
Abstract

Global antibiotic resistance, driven by intensive antibiotic exposure/abuse, constitutes a serious challenge to all health care, particularly in an era when new antimicrobial development has slowed to a trickle. Recently, we published work demonstrating the discovery and partial mechanism of action of a novel bactericidal agent that is effective against both gram-positive and gram-negative multidrug-resistant bacteria. This drug, called AB569, consists of acidified nitrite (A-NO2) and EDTA, of which there is no mechanism of resistance. Using both chemistry-, genetic-, and bioinformatics-based techniques, we first discovered that AB569 was able to generate bactericidal levels of nitric oxide (NO), while the EDTA component stabilized S-nitrosyl thiols, thereby furthering NO and downstream reactive ...

Contact Arch Biopartners
Stay connected!

Subscribe for email updates

Get email alerts when news is published
Please check the options for Investor News and Press releases to receive customized email alerts.

Publications Archives