AB569 Publications

AB569, a Novel, Topical Bactericidal Gel Formulation, Kills Pseudomonas aeruginosa and Promotes Wound Healing in a Murine Model of Burn Wound Infection


Amanda Barry, Warunya Panmanee, Daniel J. Hassett, Latha Satish


Cutaneous thermal injuries from burns/explosives are a major cause of morbidity and mortality and represent a monumental burden on our current health care system. Injury severity is predominantly due to potentially lethal sepsis caused by multidrug-resistant (MDR) bacteria such as Pseudomonas aeruginosa (MDR-PA). Thus, there is a critical need to develop novel and effective antimicrobials for the (i) prevention, (ii) treatment, and (iii) healing of such wounds that are complicated by MDR-P. aeruginosa and other bacterial infections. AB569 is a novel bactericidal tandem consisting of acidified NaNO2 (A-NO2–) and Na2-EDTA. Here, we first show that AB569 acts synergistically to kill all human burn wound strains of P. aeruginosa in vitro. This was found to be due, in part, to the generation of A-NO2–-mediated nitric oxide (NO) formation coupled with the metal chelating properties of Na2-EDTA. Using a murine scald burn wound model of P. aeruginosa infection, an AB569-Solosite gel formulation eradicated all bacteria. Futher, we also demonstrate enhanced AB569-mediated wound healing by not only accelerating wound contraction, but also by reducing levels of the proinflammatory cytokines interleukin-6 (IL-6) and IL-1β while increasing the levels of anti-inflammatory cytokine, IL-10, and granulocyte-colony-stimulating factor (G-CSF). We also observed better epidermal restoration in AB569-treated wounds. Taken together, we conclude that this study provides solid foundational evidence that AB569 can be used topically to treat highly problematic dermal insults, including wound, burn, blast, and likely, diabetic infections in civilian and military populations, and help relieve the economical burden that MDR organisms have on the global health care system

Article Links (full article)

Publications Archives